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INTRODUCTION 

Monitoring the agricultural environment 
plays a major role in early detection of plant dis-
eases so that further damage can be prevented and 
disease spread can be controlled more quickly 
and at a lower cost (Najdenovska et al., 2021). 
Monitoring, on the other hand, necessitates a 
large amount of manpower, takes a long time, and 
ultimately costs a lot (Ma et al., 2018). Comput-
erized monitoring can significantly reduce these 
costs, while increasing monitoring efficiency and 
effectiveness (Lajoie-O’Malley et al., 2020).

The ability of a computer system to classify 
plant species and distinguish between healthy and 
disease-exposed plants is absolutely necessary for 
automated monitoring with a computer system 
(Knoll et al., 2018). Plant classifiers have been 
developed using a variety of algorithms, includ-
ing Naive Bayes, random forest, support vector 

machine (SVM), K-nearest neighbor (KNN), 
decision trees, and artificial neural networks 
(ANNs). The role of leaf features as distinguish-
ing description is important in the methods de-
scribed above. With the advancement of comput-
ing technology, it is relatively simple to extract 
more than 100 features from a leaf, but it remains 
difficult to determine which features contribute 
the most to classification. Therefore, feature en-
gineering (FE) and the presence of an expert are 
still required for this task (Zhang et al., 2019).

Since its introduction in 2012, the convolu-
tional neural network (CNN) has outperformed 
other algorithms in classification in a variety 
of fields, with a classification accuracy close 
to 100% (Hassan et al., 2021; Mohanty et al., 
2016). Furthermore, CNN can automatically ex-
tract important and unique features of each class 
from image and video data without the need for 
feature engineering or the presence of an expert 
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to select the most optimal features in the classi-
fication (Kamilaris and Prenafeta-Boldú, 2018; 
Yamashita et al., 2018). The advantages of CNN 
are driving its widespread use in the automotive, 
health, business, and other industries, including 
agriculture (Too et al., 2019).

However, implementing CNN as a classifier 
in agricultural monitoring systems faces numer-
ous challenges, particularly in developing coun-
tries. These difficulties arise because the imple-
mentation of CNN necessitates large computing 
resources and a lengthy training period (Y. Wu et 
al., 2020), and farmers in developing countries 
are generally unable to provide adequate com-
puting resources and internet connections to run 
CNN monitoring systems (Rahman et al., 2020). 
Therefore, trade-off between classification per-
formance and computing resources is required so 
that CNN can be used in a low-cost monitoring 
system in agriculture (Karthik et al., 2020).

This study aimed to develop a concise CNN 
model by fusing two CNN channels with different 
filter sizes using an addition operation, as well as 
to provide a reliable CNN model that is faster than 
comparison architectures in classifying plants 
based on leaf images. This study also investigated 
the performance of the proposed CNN and com-
parison CNN models on plant classification using 
datasets with varying number of classes. 

This work’s main contributions are: (1) the 
proposed CNN model has fewer parameters 
and performs classification faster than all of the 
comparison architectures in this study. A smaller 
number of parameters will allow for less expen-
sive implementation (2) the classification accu-
racy performance of the proposed CNN model 
is nearly identical to the classification accuracy 
performance of all comparison architectures in 
this study. 

MATERIALS AND METHODS

Plant classification

Tomato diseases were identified using the 
SVM classifier in (Mokhtar et al., 2015). The data-
set was classified into two classes, beginning with 
segmentation on each image. The classification 
accuracy of the SVM classifier with five different 
kernels was 92%. The SVM classifier was used 
again in (Kaur et al., 2018) to classify the soybean 
leaf images from the PlantVillage dataset with 90% 

accuracy. The SVM was built using a combination 
of texture and color features. Study in (Chouhan 
et al., 2018) classified six fungal diseases using a 
Radial Basis Function Neural Network (RBFNN). 
Bacterial foraging optimization (BFO) was used to 
improve the speed and accuracy of RBFNN, and 
this method outperforms the K-means (KM) and 
Genetic Algorithm (GA) algorithms. 

The use of CNN in plant classification is 
dominated by the use of architectures that are 
known to be reliable, with AlexNet and VGG be-
ing the most widely used architectures (Abade et 
al., 2021). AlexNet and VGG architectures were 
used via transfer learning and fine tuning schemes 
in (Mohanty et al., 2016; Lu et al., 2017; Feren-
tinos, 2018; Suryawati et al., 2018; Rangarajan 
et al., 2018; Howlader et al., 2019; Luna et al., 
2019). The classification accuracy of these two 
CNN models is generally around 99%. However, 
these two CNN models have a large number of 
parameters, with AlexNet having 62M and VGG 
having 138M. As a result, even if only for trans-
fer learning and fine tuning schemes, these CNN 
models necessitate large computing resources, 
particularly when training from scratch (Ranga-
rajan et al., 2018; Ferentinos, 2018).

CNN models with fewer parameters, such 
as googleNet with 6.8M, were used in (McCool 
et al., 2017) and (Maeda-Gutiérrez et al., 2020). 
Studies in (Elhassouny and Smarandache, 2019) 
and (Hassan et al., 2021) used Mobilenet-v2, 
which has a total of 3.4M parameters. Squeezenet 
with a parameter number of 1.24M was used for 
plant classification in (Aravind et al., 2020) and 
(Liu et al., 2021). The reliable performance of the 
three architectures in these studies confirms that 
a concise CNN architecture can reliably perform 
the classification task of datasets with relatively 
few classes. 

Batch normalization

A normalized batch layer follows each con-
volution layer in the CNN architecture utilized 
in this work. Sergey Ioffe and Christian Sze-
gedy introduced the use of batch normalization 
in CNN in 2015 to lessen internal covariate shift 
(ICS) during CNN training. CNN training toward 
convergence will be accelerated by reducing ICS 
(Ioffe and Szegedy, 2015). 

Several studies cast doubt on the role of 
normalized batch layers in ICS reduction. The 
study in (Santurkar et al., 2018) shows that batch 
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normalization does not completely solve this ICS 
problem, although this study still confirms that 
batch normalization increases the speed of deep 
learning training to achieve convergence by con-
trolling the mean and variance of the dataset.

The study in (Bjorck et al., 2018) also ques-
tions the contribution of ICS reduction to the suc-
cess of batch normalization in expediting deep 
learning network training. The results of this 
study provide the evidence that batch normal-
ization produces more reliable gradient updates, 
enabling deep learning networks to operate at 
greater learning rates and expediting the training 
of the network toward convergence. 

The strengthening of Ioffe and Szegedy’s ar-
gument is obtained from a study by (Awais et al., 
2021). A series of experiments in this study show 
that ICS reduction is a major factor in increasing 
the convergence of a deep learning network, not 
only by batch normalization but also by all other 
methods that contribute to ICS reduction. 

Batch normalization x̂i can be determined by 
using Eq. 1:
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(1)

where: μB adalah is the mean of the input xi and 
σ2

B is the variance. The value of e is used 
to avoid division by zero when σB is very 
small so that numerical stability is in-
creased. Furthermore, the final result of the 
yi normalization batch is calculated by Eq. 2.
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where: γ the scaling factor and β is the shifting fac-
tor and these two values are included in the 
parameters studied during CNN training.

Fusion of CNN channel

The various CNN architectures proposed 
recently use multiple modules consisting of 
convolution layer parallel channels. The use of 
channels with different filter sizes is intended to 
improve the ability of the CNN model to handle 
objects at multiple scales (Szegedy et al., 2015). 
Concatenation and addition operations can be 
used to combine two or more CNN channels. 
Concatenation is a channel-wise action that is 
more commonly employed than addition, which 
is an element-wise operation (Wu and Wang, 
2019). While in the addition operation the size 

of the fused layer is the same as the initial size 
of the two channels, in concatenation the size of 
the fused layer is equal to the total of the sizes 
of the two channels. Equation 3 shows the con-
catenation operation on tensor A and tensor B 
which form tensor C, while Eq. 4 is the addition 
operation of tensor A and tensor B.
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The CNN GoogleNet model uses 9 concatena-
tion operations to combine multiple parallel chan-
nels on the inception module. The first channel 
contains 1 convolution layer with a filter size of 1 
× 1, the second channel with a filter size of 3 × 3 
and the third channel with a filter size of 5 × 5 is 
combined with the concatenation operation (Sze-
gedy et al., 2015). Squeezenet uses 8 concatena-
tion operations in its architecture (Iandola et al., 
2016). MobileNetV2 uses 10 addition operations 
and ShuffleNet uses these two operations with 3 
concatenation operations and 13 addition opera-
tions (Sandler et al., 2018). However, the addition 
operation on ShuffleNet and MobileNetV2 adds 
the feature maps from the previous convolution 
block to the feature map of the following block 
rather than the feature maps of the two parallel 
channels. In this work, the proposed approach is 
to combine the two feature maps that were created 
through the extraction of two parallel CNN chan-
nels with the same depth, but different filter sizes.

Dataset

The dataset used in this study contains leaf 
images that are grouped into 38 classes consist-
ing of 14 classes from different healthy plants 
and 28 classes from leaves exposed to various 
diseases. All images in this dataset are from the 
open access repository via the PlantVillage proj-
ect (Hughes and Salathe, 2015). The PlantVillage 
dataset is one of the most important datasets in 
the field of plant classification (Brahimi, 2018). A 
review of 121 plant classification studies (Abade 
et al., 2021) from 2010 – 2019 showed that 65% 
of the studies were conducted with stored datas-
ets or in a controlled experimental environment. 
Out of these studies, 45 made use of the PlantVil-
lage dataset. Some of the studies, like the one by 
(Mohanty et al., 2016) and (Saleem et al., 2020), 
tested the effectiveness of the CNN design using 
38 already-existing classes. Others just employed 
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a few classes, such as (Brahimi et al., 2017) who 
employed nine classes of diseased tomato leaves 
and (Maeda-Gutiérrez et al., 2020) who employed 
ten classes of healthy and diseased tomato leaves. 

Each image in the PlantVillage dataset was a 
single leaf RGB image with a size of 256 × 256. 
The total number of images in this dataset was 
70.846 and was divided into 80% for training and 
20% for testing. This dataset was utilized for both 
transfer learning on the comparison architectures 
and for training from scratch on the proposed 
CNN model. Image size was maintained at 256 
× 256 in the proposed CNN model training. In 
transfer learning for the comparison architectures, 
the size of this image was changed according to 
the default size of the input image of each com-
parison architecture. In both training and testing 
schemes, there was no further image preprocess-
ing applied to the dataset.

The proposed architecture

Figure 1 shows the proposed architecture. 
The CNN model called SlimPlantNet was built 
from the fusion of two CNN channels with differ-
ent filter sizes in some convolution layers. Each 
channel was a concise CNN consisting of 6 lay-
ers of convolution. The addition element-wise 
operation was used to combine the two channels 
in order to add the features obtained from the first 
channel to the features obtained from the second 
channel. This channel summation was used so 
that the features extracted by the two channels 
complement each other based on the difference 
in scale. A 256 × 256 color image was used as the 
input for both CNN channels.

The first channel was a channel consisting of a 
convolution layer with a smaller filter size than the 
second channel. The first channel was preceded by 
a convolution layer consisting of 8 filters with each 
filter size of 7 × 7, while the second channel was 
preceded by a convolution layer with 8 filters mea-
suring 15 × 15 each. The difference in filter sizes 
was intended to capture features at different scales 
and demonstrated that the first channel was respon-
sible for extracting more detailed and local features, 
whereas the second channel extracted more global 
features. The size of the first and second channel fil-
ters were reduced in subsequent convolution layers 
to decrease the computational burden and the num-
ber of parameters involved. The details of the size of 
each layer of the two channels are shown in Table 1.

The difference in filter size between the two 
channels will extract features with varying sharp-
ness, resulting in different feature maps. The feature 
map m extracted by each convolution layer using 
the F filter on the input tensor I is shown in Eq. 5.

 𝑥𝑥𝑥𝑥�𝑖𝑖𝑖𝑖 =
𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 − µ𝐵𝐵𝐵𝐵
�𝜎𝜎𝜎𝜎𝐵𝐵𝐵𝐵2 + 𝑒𝑒𝑒𝑒

 

 

𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 =  𝛾𝛾𝛾𝛾 𝑥𝑥𝑥𝑥�𝑖𝑖𝑖𝑖 + 𝛽𝛽𝛽𝛽 

 

C =  [A B] 

 

C =  [A + B] 

 

𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = (𝐼𝐼𝐼𝐼 ∗ 𝐹𝐹𝐹𝐹)𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 

 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒𝑒𝑒𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒𝑒𝑒𝑢𝑢𝑢𝑢𝑒𝑒𝑒𝑒𝑢𝑢𝑢𝑢

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒𝑒𝑒𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒𝑒𝑒𝑢𝑢𝑢𝑢𝑒𝑒𝑒𝑒𝑢𝑢𝑢𝑢 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑢𝑢𝑢𝑢𝑒𝑒𝑒𝑒𝑢𝑢𝑢𝑢
 

(5)

The batch normalization layer, ReLU activa-
tion function, and the maxPooling layer followed 
the first to fifth convolution layers in both chan-
nels, while the maxPooling layer did not follow the 
sixth convolution layer. Stride [2 2] was used on 
all maxPooling layers and most convolution layers 
to reduce the size of the feature maps generated 
by these layers, decrease the number of parameters 
involved in computation, and speed up the training 
and classification tasks. Padding and stride [1 1] 
were used to keep the output size of the two chan-
nels the same so that addition operations could be 
performed at the ends of the two channels.

Figure 1. The architecture of the proposed concise CNN
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Transfer learning, training and testing

GoogleNet, MobileNetV2, and SqueezeNet 
were used to compare the performance of the 
concise CNN model proposed in this study. These 

three CNN modes were chosen because they have 
a small number of parameters compared to other 
CNNs and are frequently used in plant classifica-
tion tasks. Transfer learning was performed in all 
three models using the PlantVillage dataset used 

Table 1. Details of each layer of the SlimPlantNet architecture
First Channel Second Channel

Layer 
Name Type and Size Output Size Total 

Parameter
Layer 
Name Type and Size Output Size Total 

Parameter

Conv 11

Convolution layer 
8x7x7, stride [2 2], 
padding [2 2 2 2]

127× 127×8 1184

Conv
21

Convolution layer 
8x15x15, stride [2 2], 
padding [2 2 2 2]

123× 
123×8 5408

BatchNorm 
Followed by ReLU 127× 127×8 16 BatchNorm Followed 

by ReLU
123× 

123×8 16

MaxPooling layer 
7x7, stride [2 2], 
padding‚ same’

64×64×8
0 MaxPooling layer 3x3, 

stride [2 2], padding‚ 
same’

62×62×8
0

0 0

Conv 
12

Convolution layer 
16x7x7, stride [2 2], 
padding [2 2 2 2]

31×31×16 6288

Conv 
22

Convolution layer 
16x9x9, stride [2 2], 
padding [2 2 2 2]

29×29×16 10384

BatchNorm 
Followed by ReLU 31×31×16 32 BatchNorm Followed 

by ReLU 29×29×16 32

MaxPooling layer 
7x7, stride [2 2], 
padding‚ same’

16×16×16
0 MaxPooling layer 3x3, 

stride [2 2], padding‚ 
same’

15×15×16
0

0 0

Conv 
13

Convolution layer 
32x3x3, stride [2 2], 
padding [2 2 2 2]

9×9×32 4640

Conv 
23

Convolution layer 
32×5×5, stride [2 2], 
padding [2 2 2 2]

8×8×32 12832

BatchNorm 
Followed by ReLU 9×9×32 64 BatchNorm Followed 

by ReLU 8×8×32 64

MaxPooling layer 
3x3, stride [2 2], 
padding‚ same’

5×5×32
0 MaxPooling layer 3x3, 

stride [2 2], padding‚ 
same’

4×4×32
0

0 0

Conv 
14

Convolution layer 
64x3x3, stride [2 2], 
padding [2 2 2 2]

4×4×64 18496

Conv 
24

Convolution layer 
64x3x3, stride [1 1], 
padding [1 1 1 1]

4×4×64 18496

BatchNorm 
Followed by ReLU 4×4×64 128 BatchNorm Followed 

by ReLU 4×4×64 128

MaxPooling layer 
7x7, stride [2 2], 
padding ‚same’

2×2×64
0 MaxPooling layer 3x3, 

stride [2 2], padding‚ 
same’

2×2×64
0

0 0

Conv 
15

Convolution layer 
64x3x3, stride [2 2], 
padding [2 2 2 2]

2×2×64 36928

Conv 
25

Convolution layer 
64x3x3, stride [1 1], 
padding [1 1 1 1]

2×2×64 36928

BatchNorm 
Followed by ReLU 2×2×64 128 BatchNorm Followed 

by ReLU 2×2×64 128

MaxPooling layer 
7x7, stride [2 2], 
padding‚ same’

1×1×64
0 MaxPooling layer 3x3, 

stride [2 2], padding‚ 
same’

1×1×64
0

0 0

Conv 
16

Convolution layer 
64x3x3, stride [2 2], 
padding [1 1 1 1]

1×1×64 36928
Conv 

26

Convolution layer 
64x3x3, stride [1 1], 
padding [1 1 1 1]

1×1×64 36928

BatchNorm 
Followed by ReLU 1×1×64 128 BatchNorm Followed 

by ReLU 1×1×64 128

Chan- 
nel 

Fusion

Fusion by Addition 1×1×64 -
Ave 
Pool

5x5 Average pooling, 
stride [2 2], padding‚ 
same’

1×1×64 -Fusion by 
Concatenation 1×1× 128 -

Full1 Fully connected 
layer 1x64 1×1×64 4160 Full2 Fully connected layer 

1x10 1×1×10 650
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in this study. In this study, transfer learning was 
used to replace the classification layer in the three 
architectures with a new layer that was scaled to 
the number of classes in the dataset. All layers in 
the comparison architecture except the classifica-
tion layer are preserved and frozen before being 
retrained only on the new layer using the Plant-
Village dataset. 

The proposed architecture named SlimPlant-
Net was trained from scratch. SlimPlantNet train-
ing and transfer learning comparison architecture 
were implemented in 20 epochs using the stochas-
tic gradient descent with momentum (SGDM) op-
timization function. All comparison architectures 
used a learning rate of 0.0003, whereas the pro-
posed architecture used a rate of 0.05. The test 
was performed after each epoch, and the classifi-
cation time per image was performed sequentially 
after all training and testing was completed. The 
test was conducted on a computer with a Core i5 
@ 2.7 GHz processor and 16 GB RAM memory 
with a Matlab 2019 environment.

Further investigation was carried out by ex-
amining the different effects of the fusion method 
of the two channels on SlimPlantNet via addition 
and concatenation operations. In Table 2, the ar-
chitecture formed by the addition operation was 
named SlimPlantNet_addition, and the architec-
ture formed by the concatenation operation was 
named SlimPlantNet_concat. The performance of 
each channel on the proposed architecture was also 
demonstrated as a single CNN architecture. This 
architecture was created by connecting each chan-
nel’s sixth ReLU layer to the averagePooling layer 
and forming a complete CNN. SlimPlantNet_fil-
ter7 was the single CNN obtained from a channel 
with a 7 × 7 filter, and SlimPlantNet_filter15 was 
obtained from a channel with a 15 × 15 filter.

The performance of all CNN architectures 
involved in this study was measured using clas-
sification accuracy, loss, and average time re-
quired to classify each leaf image. Classifica-
tion accuracy and loss are the most widely used 
parameters in testing the performance of a CNN 
(Maeda-Gutiérrez et al., 2020). Accuracy and loss 
were measured in training and testing every train-
ing epoch was completed, whereas the average 
classification time was measured during testing. 
Classification accuracy CA was measured based 
on the following Eq. 6:

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 +

+𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

 

 

(6)

where: TruePos (true positive) is the number of 
positive images classified as positive;  
TrueNeg (true negative) is the number 
of negative images classified as negative; 
FalPos denotes the number of nega-
tive images classified as positive;   
FalNeg denotes the number of positive 
images classified as negative.

RESULTS AND DISCUSSION

Table 2 compares the performance of the 
proposed CNN model to the performance of the 
comparison CNN architectures in the classifica-
tion of 14 different plant classes in the PlantVil-
lage dataset, namely Apple healthy, Blueberry 
healthy, Cherry healthy, Corn (maize) healthy, 
Grape healthy, Orange Haunglongbing (Citrus 
greening), Peach healthy, Pepper healthy, Pota-
to healthy, Raspberry healthy, Soybean healthy, 
Squash Powdery mildew, Strawberry healthy, and 
Tomato Healthy. The training was carried out in 
20 epochs with the previously mentioned learning 
rate setting. 

The test results show that the classification 
accuracy, as well as the loss value, are nearly 
identical between the proposed CNN model and 
the comparison CNN architecture. In this study, 
the accuracy of GoogleNet is almost identical 
to the accuracy of GoogleNet shown in (Maeda-
Gutiérrez et al., 2020), which is 99.39% in 10 to-
mato classes from the PlantVillage dataset.

Significant differences can be seen in the train-
ing time and the required classification time per 
image. SlimPlantNet using addition and concate-
nation operations takes 0.0043 seconds to classify 
1 image on the test computer used in this study, 
which is 5.12 times faster than SqueezeNet, 8.23 
times than GoogleNet, and 9.40 times than Mo-
bileNetV2. The SlimPlantNet model also has a 
much shorter training time. Of course, the aspects 
of training time and classification time, as well 
as the number of parameters involved, will be 
the advantages of the SlimPlantNet model when 
implemented in an agricultural real-time monitor-
ing system. Because there are fewer parameters, 
it can be implemented in computing devices with 
fewer resources and at a lower cost. The faster 
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classification time, the faster the monitoring sys-
tem will run in real time.

This study also carried out further testing of 
the SlimPlanNet model using fusion with addition 
operations and concatenation operations based on 
the accuracy and loss of testing. SlimPlanNet’s 
forming channels were also evaluated as a single 
CNN. This test was run in 60 epochs with varying 
numbers of classes, ranging from 5 to 38 classes, 
to see trends and performance limits in different 
data scales. Figure 2 depicts the test results.

SlimPlantNet addition achieved 98.81% clas-
sification accuracy on 38 classes and higher ac-
curacy on a smaller number of classes in this test. 
In comparison, SqueezeNet achieved 98.46% test 
accuracy in (Liu et al., 2021) and 98.49% in (Ara-
vind et al., 2020) in the classification of 38 Plant-
Village dataset classes. In (Hassan et al., 2021), 

MobileNetV2 achieved a classification accuracy 
of 97.02% in the classification of 38 PlantVillage 
dataset classes. The study of (Sutaji and Rosyid, 
2022) fine-tuned GoogleNet and MobileNetV2 
by unfreezing the final convolution block layers. 
The accuracy of the test on the classification of 
38 PlantVillage dataset classes was 98.34% for 
GoogleNet and 98.95% for MobileNetV2. The 
results of this test and comparisons show that 
SlimPlantNet addition’s accuracy is quite reliable 
and competitive.

The results of this test also show that SlimP-
lantNet_addition is better in classifying the data-
set than SlimPlantNet_concatenation and its con-
structor channel. SlimPlantNet_addition’s accu-
racy is always higher, and the trend is quite stable 
as the number of classified classes increases. 

Table 2. Performance testing of the proposed CNN model and comparison models on 14 PlantVillage dataset 
classes at 20 epochs

Architecture Training time 
(hh:mm:ss)

Highest accuracy 
achieved (%) Lowest loss achieved Number of 

parameters
Classification 
time/image (s)

Training Testing Training Testing

GoogleNet 11:36:09 100 99.87 0.0002 0.0044 6.8M 0.0354

SqueezeNet 05:11:05 100 99.92 0.0005 0.0038 1.24M 0.0220

MobileNetV2 20:50:16 100 99.80 0.0002 0.0081 3.4M 0.0404

SlimPlantNet_addition 01:44:22 100 99.58 0.0013 0.0201 222.99k 0.0043

SlimPlantNet_concat 01:33:28 100 99.60 0.0017 0.0198 234.09k 0.0043

SlimPlantNet_filter7 00:55:30 100 99.31 0.0018 0.0274 108.52k 0.0040

SlimPlantNet_filter15 00:56:11 100 99.23 0.0019 0.0269 128.10k 0.0029

Figure 2. Performance comparison of SlimPlantNet combined using addition 
operation, concatenation operation, and performance of forming channels
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Figure 3. Test classification loss from the proposed model

Figure 4. SlimPlantNet performance for plant classification of 38 classes 
in 60 epochs (a) Testing accuracy; b) Testing loss)

a)

b)
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The performance comparison based on the 
test loss value shown in Figure 3 confirms the 
test results based on classification accuracy that 
the SlimPlantNet model with addition operation 
outperforms channel merging with concatenation 
operation. It is clear that the SlimPlantNet_ad-
dition loss value is always lower than the other 
three models.

The last comparison carried out in this study 
was a comparison of the trend of accuracy and 
test loss in 60 training epochs from SlimPlantNet, 
both combined with addition and concatenation 
operations as well as the SlimPlantNet channel. 
The training data on the PlantVillage dataset with 
38 classes was highlighted, and the comparison 
results are shown in Figure 4. SlimPlantNet test-
ing with addition operation fusion appears to be 
more accurate and stable over 60 training epochs, 
as does the loss value, which remains relatively 
low during the training period.

SlimPlanNet_filter7 and SlimPlanNet_fil-
ter15 have generally lower performance than 
SlimPlanNet_addition and SlimPlanNet_concat, 
but SlimPlanNet_filter7 outperforms SlimPlan-
Net_concat in classification from 5 to 25 dataset 
classes. Although the accuracy of SlimPlanNet_
filter7 is slightly lower than that of SlimPlanNet_
addition, if the number of parameters and classi-
fication speed are the most important factors, the 
SlimPlanNet_filter7 model can be recommended 
in classification tasks with fewer than 25 classes.

CONCLUSIONS

The results of the tests show that SlimPlant-
Net, which was formed by fusing two concise 
CNN channels using the addition operation, 
achieves reliable and competitive performance. 
Although classification speed and training time are 
not different, the SlimPlantNet model’s classifica-
tion accuracy and loss are better and more stable 
than the performance of SlimPlantNet one which 
uses channel fusion with concatenation operation. 
SlimPlantNet’s classification accuracy on 14 dif-
ferent plant classes is nearly identical to the classi-
fication accuracy of the comparison architectures. 

SlimPlantNet classifies images faster and 
with fewer parameters than comparison architec-
tures. The speed in classification and the smaller 
number of parameters are the advantages of the 
SlimPlantNet model when implemented in a real-
time monitoring system in the agricultural field 

with limited computer resources. Therefore, the 
future work after this study will be to integrate 
SlimPlantNet into the agricultural monitoring 
system. The use of the SlimPlantNet model in 
classification tasks other than plants is also inter-
esting to investigate, particularly when the clas-
sification task involves a small number of classes, 
as in the PlantVillage dataset. 
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