
61

INTRODUCTION

Monitoring the agricultural environment
plays a major role in early detection of plant dis-
eases so that further damage can be prevented and
disease spread can be controlled more quickly
and at a lower cost (Najdenovska et al., 2021).
Monitoring, on the other hand, necessitates a
large amount of manpower, takes a long time, and
ultimately costs a lot (Ma et al., 2018). Comput-
erized monitoring can significantly reduce these
costs, while increasing monitoring efficiency and
effectiveness (Lajoie-O’Malley et al., 2020).

The ability of a computer system to classify
plant species and distinguish between healthy and
disease-exposed plants is absolutely necessary for
automated monitoring with a computer system
(Knoll et al., 2018). Plant classifiers have been
developed using a variety of algorithms, includ-
ing Naive Bayes, random forest, support vector

machine (SVM), K-nearest neighbor (KNN),
decision trees, and artificial neural networks
(ANNs). The role of leaf features as distinguish-
ing description is important in the methods de-
scribed above. With the advancement of comput-
ing technology, it is relatively simple to extract
more than 100 features from a leaf, but it remains
difficult to determine which features contribute
the most to classification. Therefore, feature en-
gineering (FE) and the presence of an expert are
still required for this task (Zhang et al., 2019).

Since its introduction in 2012, the convolu-
tional neural network (CNN) has outperformed
other algorithms in classification in a variety
of fields, with a classification accuracy close
to 100% (Hassan et al., 2021; Mohanty et al.,
2016). Furthermore, CNN can automatically ex-
tract important and unique features of each class
from image and video data without the need for
feature engineering or the presence of an expert

Parallelization of Concise Convolutional Neural Networks
for Plant Classification

Arnes Sembiring1*, Yuwaldi Away1,2, Fitri Arnia1,2, Rusdha Muharar1,2

1 Doctoral Program, School of Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
2 Department of Electrical and Computer Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
* Corresponding author’s email: arnessembiring4@gmail.com

ABSTRACT
Monitoring the agricultural field is the key to preventing the spread of disease and handling it quickly. The com-
puter-based automatic monitoring system can meet the needs of large-scale and real-time monitoring. Plant clas-
sifiers that can work quickly in computer with limited resources are needed to realize this monitoring system.
This study proposes convolutional neural network (CNN) architecture as a plant classifier based on leaf imagery.
This architecture was built by parallelizing two concise CNN channels with different filter sizes using the addition
operation. GoogleNet, SqueezeNet and MobileNetV2 were used to compare the performance of the proposed ar-
chitecture. The classification performance of all these architectures was tested using the PlantVillage dataset which
consists of 38 classes and 14 plant types. The experimental results indicated that the proposed architecture with a
smaller number of parameters achieved nearly the same accuracy as the comparison architectures. In addition, the
proposed architecture classified images 5.12 times faster than SqueezeNet, 8.23 times faster than GoogleNet, and
9.4 times faster than MobileNetV2. These findings suggest that when implemented in the agricultural field, the
proposed architecture can be a reliable and faster plant classifier with fewer resources.

Keywords: parallelization of concise CNN, plant classification, multi-scale CNN.

Journal of Ecological Engineering
Received: 2022.10.22
Accepted: 2022.12.08
Published: 2023.01.01

Journal of Ecological Engineering 2023, 24(2), 61–71
https://doi.org/10.12911/22998993/156754
ISSN 2299–8993, License CC-BY 4.0

62

Journal of Ecological Engineering 2023, 24(2), 61–71

to select the most optimal features in the classi-
fication (Kamilaris and Prenafeta-Boldú, 2018;
Yamashita et al., 2018). The advantages of CNN
are driving its widespread use in the automotive,
health, business, and other industries, including
agriculture (Too et al., 2019).

However, implementing CNN as a classifier
in agricultural monitoring systems faces numer-
ous challenges, particularly in developing coun-
tries. These difficulties arise because the imple-
mentation of CNN necessitates large computing
resources and a lengthy training period (Y. Wu et
al., 2020), and farmers in developing countries
are generally unable to provide adequate com-
puting resources and internet connections to run
CNN monitoring systems (Rahman et al., 2020).
Therefore, trade-off between classification per-
formance and computing resources is required so
that CNN can be used in a low-cost monitoring
system in agriculture (Karthik et al., 2020).

This study aimed to develop a concise CNN
model by fusing two CNN channels with different
filter sizes using an addition operation, as well as
to provide a reliable CNN model that is faster than
comparison architectures in classifying plants
based on leaf images. This study also investigated
the performance of the proposed CNN and com-
parison CNN models on plant classification using
datasets with varying number of classes.

This work’s main contributions are: (1) the
proposed CNN model has fewer parameters
and performs classification faster than all of the
comparison architectures in this study. A smaller
number of parameters will allow for less expen-
sive implementation (2) the classification accu-
racy performance of the proposed CNN model
is nearly identical to the classification accuracy
performance of all comparison architectures in
this study.

MATERIALS AND METHODS

Plant classification

Tomato diseases were identified using the
SVM classifier in (Mokhtar et al., 2015). The data-
set was classified into two classes, beginning with
segmentation on each image. The classification
accuracy of the SVM classifier with five different
kernels was 92%. The SVM classifier was used
again in (Kaur et al., 2018) to classify the soybean
leaf images from the PlantVillage dataset with 90%

accuracy. The SVM was built using a combination
of texture and color features. Study in (Chouhan
et al., 2018) classified six fungal diseases using a
Radial Basis Function Neural Network (RBFNN).
Bacterial foraging optimization (BFO) was used to
improve the speed and accuracy of RBFNN, and
this method outperforms the K-means (KM) and
Genetic Algorithm (GA) algorithms.

The use of CNN in plant classification is
dominated by the use of architectures that are
known to be reliable, with AlexNet and VGG be-
ing the most widely used architectures (Abade et
al., 2021). AlexNet and VGG architectures were
used via transfer learning and fine tuning schemes
in (Mohanty et al., 2016; Lu et al., 2017; Feren-
tinos, 2018; Suryawati et al., 2018; Rangarajan
et al., 2018; Howlader et al., 2019; Luna et al.,
2019). The classification accuracy of these two
CNN models is generally around 99%. However,
these two CNN models have a large number of
parameters, with AlexNet having 62M and VGG
having 138M. As a result, even if only for trans-
fer learning and fine tuning schemes, these CNN
models necessitate large computing resources,
particularly when training from scratch (Ranga-
rajan et al., 2018; Ferentinos, 2018).

CNN models with fewer parameters, such
as googleNet with 6.8M, were used in (McCool
et al., 2017) and (Maeda-Gutiérrez et al., 2020).
Studies in (Elhassouny and Smarandache, 2019)
and (Hassan et al., 2021) used Mobilenet-v2,
which has a total of 3.4M parameters. Squeezenet
with a parameter number of 1.24M was used for
plant classification in (Aravind et al., 2020) and
(Liu et al., 2021). The reliable performance of the
three architectures in these studies confirms that
a concise CNN architecture can reliably perform
the classification task of datasets with relatively
few classes.

Batch normalization

A normalized batch layer follows each con-
volution layer in the CNN architecture utilized
in this work. Sergey Ioffe and Christian Sze-
gedy introduced the use of batch normalization
in CNN in 2015 to lessen internal covariate shift
(ICS) during CNN training. CNN training toward
convergence will be accelerated by reducing ICS
(Ioffe and Szegedy, 2015).

Several studies cast doubt on the role of
normalized batch layers in ICS reduction. The
study in (Santurkar et al., 2018) shows that batch

63

Journal of Ecological Engineering 2023, 24(2), 61–71

normalization does not completely solve this ICS
problem, although this study still confirms that
batch normalization increases the speed of deep
learning training to achieve convergence by con-
trolling the mean and variance of the dataset.

The study in (Bjorck et al., 2018) also ques-
tions the contribution of ICS reduction to the suc-
cess of batch normalization in expediting deep
learning network training. The results of this
study provide the evidence that batch normal-
ization produces more reliable gradient updates,
enabling deep learning networks to operate at
greater learning rates and expediting the training
of the network toward convergence.

The strengthening of Ioffe and Szegedy’s ar-
gument is obtained from a study by (Awais et al.,
2021). A series of experiments in this study show
that ICS reduction is a major factor in increasing
the convergence of a deep learning network, not
only by batch normalization but also by all other
methods that contribute to ICS reduction.

Batch normalization x̂i can be determined by
using Eq. 1:

 𝑥𝑥𝑥𝑥�𝑖𝑖𝑖𝑖 =
𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 − µ𝐵𝐵𝐵𝐵
�𝜎𝜎𝜎𝜎𝐵𝐵𝐵𝐵2 + 𝑒𝑒𝑒𝑒

𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 = 𝛾𝛾𝛾𝛾 𝑥𝑥𝑥𝑥�𝑖𝑖𝑖𝑖 + 𝛽𝛽𝛽𝛽

C = [A B]

C = [A + B]

𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = (𝐼𝐼𝐼𝐼 ∗ 𝐹𝐹𝐹𝐹)𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒𝑒𝑒𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒𝑒𝑒𝑢𝑢𝑢𝑢𝑒𝑒𝑒𝑒𝑢𝑢𝑢𝑢

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒𝑒𝑒𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒𝑒𝑒𝑢𝑢𝑢𝑢𝑒𝑒𝑒𝑒𝑢𝑢𝑢𝑢 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑢𝑢𝑢𝑢𝑒𝑒𝑒𝑒𝑢𝑢𝑢𝑢

(1)

where: μB adalah is the mean of the input xi and
σ2

B is the variance. The value of e is used
to avoid division by zero when σB is very
small so that numerical stability is in-
creased. Furthermore, the final result of the
yi normalization batch is calculated by Eq. 2.

 𝑥𝑥𝑥𝑥�𝑖𝑖𝑖𝑖 =
𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 − µ𝐵𝐵𝐵𝐵
�𝜎𝜎𝜎𝜎𝐵𝐵𝐵𝐵2 + 𝑒𝑒𝑒𝑒

𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 = 𝛾𝛾𝛾𝛾 𝑥𝑥𝑥𝑥�𝑖𝑖𝑖𝑖 + 𝛽𝛽𝛽𝛽

C = [A B]

C = [A + B]

𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = (𝐼𝐼𝐼𝐼 ∗ 𝐹𝐹𝐹𝐹)𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒𝑒𝑒𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒𝑒𝑒𝑢𝑢𝑢𝑢𝑒𝑒𝑒𝑒𝑢𝑢𝑢𝑢

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒𝑒𝑒𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒𝑒𝑒𝑢𝑢𝑢𝑢𝑒𝑒𝑒𝑒𝑢𝑢𝑢𝑢 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑢𝑢𝑢𝑢𝑒𝑒𝑒𝑒𝑢𝑢𝑢𝑢

(2)

where: γ the scaling factor and β is the shifting fac-
tor and these two values are included in the
parameters studied during CNN training.

Fusion of CNN channel

The various CNN architectures proposed
recently use multiple modules consisting of
convolution layer parallel channels. The use of
channels with different filter sizes is intended to
improve the ability of the CNN model to handle
objects at multiple scales (Szegedy et al., 2015).
Concatenation and addition operations can be
used to combine two or more CNN channels.
Concatenation is a channel-wise action that is
more commonly employed than addition, which
is an element-wise operation (Wu and Wang,
2019). While in the addition operation the size

of the fused layer is the same as the initial size
of the two channels, in concatenation the size of
the fused layer is equal to the total of the sizes
of the two channels. Equation 3 shows the con-
catenation operation on tensor A and tensor B
which form tensor C, while Eq. 4 is the addition
operation of tensor A and tensor B.

 𝑥𝑥𝑥𝑥�𝑖𝑖𝑖𝑖 =
𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 − µ𝐵𝐵𝐵𝐵
�𝜎𝜎𝜎𝜎𝐵𝐵𝐵𝐵2 + 𝑒𝑒𝑒𝑒

𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 = 𝛾𝛾𝛾𝛾 𝑥𝑥𝑥𝑥�𝑖𝑖𝑖𝑖 + 𝛽𝛽𝛽𝛽

C = [A B]

C = [A + B]

𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = (𝐼𝐼𝐼𝐼 ∗ 𝐹𝐹𝐹𝐹)𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒𝑒𝑒𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒𝑒𝑒𝑢𝑢𝑢𝑢𝑒𝑒𝑒𝑒𝑢𝑢𝑢𝑢

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒𝑒𝑒𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒𝑒𝑒𝑢𝑢𝑢𝑢𝑒𝑒𝑒𝑒𝑢𝑢𝑢𝑢 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑢𝑢𝑢𝑢𝑒𝑒𝑒𝑒𝑢𝑢𝑢𝑢

(3)

 𝑥𝑥𝑥𝑥�𝑖𝑖𝑖𝑖 =
𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 − µ𝐵𝐵𝐵𝐵
�𝜎𝜎𝜎𝜎𝐵𝐵𝐵𝐵2 + 𝑒𝑒𝑒𝑒

𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 = 𝛾𝛾𝛾𝛾 𝑥𝑥𝑥𝑥�𝑖𝑖𝑖𝑖 + 𝛽𝛽𝛽𝛽

C = [A B]

C = [A + B]

𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = (𝐼𝐼𝐼𝐼 ∗ 𝐹𝐹𝐹𝐹)𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒𝑒𝑒𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒𝑒𝑒𝑢𝑢𝑢𝑢𝑒𝑒𝑒𝑒𝑢𝑢𝑢𝑢

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒𝑒𝑒𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒𝑒𝑒𝑢𝑢𝑢𝑢𝑒𝑒𝑒𝑒𝑢𝑢𝑢𝑢 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑢𝑢𝑢𝑢𝑒𝑒𝑒𝑒𝑢𝑢𝑢𝑢

(4)

The CNN GoogleNet model uses 9 concatena-
tion operations to combine multiple parallel chan-
nels on the inception module. The first channel
contains 1 convolution layer with a filter size of 1
× 1, the second channel with a filter size of 3 × 3
and the third channel with a filter size of 5 × 5 is
combined with the concatenation operation (Sze-
gedy et al., 2015). Squeezenet uses 8 concatena-
tion operations in its architecture (Iandola et al.,
2016). MobileNetV2 uses 10 addition operations
and ShuffleNet uses these two operations with 3
concatenation operations and 13 addition opera-
tions (Sandler et al., 2018). However, the addition
operation on ShuffleNet and MobileNetV2 adds
the feature maps from the previous convolution
block to the feature map of the following block
rather than the feature maps of the two parallel
channels. In this work, the proposed approach is
to combine the two feature maps that were created
through the extraction of two parallel CNN chan-
nels with the same depth, but different filter sizes.

Dataset

The dataset used in this study contains leaf
images that are grouped into 38 classes consist-
ing of 14 classes from different healthy plants
and 28 classes from leaves exposed to various
diseases. All images in this dataset are from the
open access repository via the PlantVillage proj-
ect (Hughes and Salathe, 2015). The PlantVillage
dataset is one of the most important datasets in
the field of plant classification (Brahimi, 2018). A
review of 121 plant classification studies (Abade
et al., 2021) from 2010 – 2019 showed that 65%
of the studies were conducted with stored datas-
ets or in a controlled experimental environment.
Out of these studies, 45 made use of the PlantVil-
lage dataset. Some of the studies, like the one by
(Mohanty et al., 2016) and (Saleem et al., 2020),
tested the effectiveness of the CNN design using
38 already-existing classes. Others just employed

64

Journal of Ecological Engineering 2023, 24(2), 61–71

a few classes, such as (Brahimi et al., 2017) who
employed nine classes of diseased tomato leaves
and (Maeda-Gutiérrez et al., 2020) who employed
ten classes of healthy and diseased tomato leaves.

Each image in the PlantVillage dataset was a
single leaf RGB image with a size of 256 × 256.
The total number of images in this dataset was
70.846 and was divided into 80% for training and
20% for testing. This dataset was utilized for both
transfer learning on the comparison architectures
and for training from scratch on the proposed
CNN model. Image size was maintained at 256
× 256 in the proposed CNN model training. In
transfer learning for the comparison architectures,
the size of this image was changed according to
the default size of the input image of each com-
parison architecture. In both training and testing
schemes, there was no further image preprocess-
ing applied to the dataset.

The proposed architecture

Figure 1 shows the proposed architecture.
The CNN model called SlimPlantNet was built
from the fusion of two CNN channels with differ-
ent filter sizes in some convolution layers. Each
channel was a concise CNN consisting of 6 lay-
ers of convolution. The addition element-wise
operation was used to combine the two channels
in order to add the features obtained from the first
channel to the features obtained from the second
channel. This channel summation was used so
that the features extracted by the two channels
complement each other based on the difference
in scale. A 256 × 256 color image was used as the
input for both CNN channels.

The first channel was a channel consisting of a
convolution layer with a smaller filter size than the
second channel. The first channel was preceded by
a convolution layer consisting of 8 filters with each
filter size of 7 × 7, while the second channel was
preceded by a convolution layer with 8 filters mea-
suring 15 × 15 each. The difference in filter sizes
was intended to capture features at different scales
and demonstrated that the first channel was respon-
sible for extracting more detailed and local features,
whereas the second channel extracted more global
features. The size of the first and second channel fil-
ters were reduced in subsequent convolution layers
to decrease the computational burden and the num-
ber of parameters involved. The details of the size of
each layer of the two channels are shown in Table 1.

The difference in filter size between the two
channels will extract features with varying sharp-
ness, resulting in different feature maps. The feature
map m extracted by each convolution layer using
the F filter on the input tensor I is shown in Eq. 5.

 𝑥𝑥𝑥𝑥�𝑖𝑖𝑖𝑖 =
𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 − µ𝐵𝐵𝐵𝐵
�𝜎𝜎𝜎𝜎𝐵𝐵𝐵𝐵2 + 𝑒𝑒𝑒𝑒

𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 = 𝛾𝛾𝛾𝛾 𝑥𝑥𝑥𝑥�𝑖𝑖𝑖𝑖 + 𝛽𝛽𝛽𝛽

C = [A B]

C = [A + B]

𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = (𝐼𝐼𝐼𝐼 ∗ 𝐹𝐹𝐹𝐹)𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒𝑒𝑒𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒𝑒𝑒𝑢𝑢𝑢𝑢𝑒𝑒𝑒𝑒𝑢𝑢𝑢𝑢

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒𝑒𝑒𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒𝑒𝑒𝑢𝑢𝑢𝑢𝑒𝑒𝑒𝑒𝑢𝑢𝑢𝑢 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑢𝑢𝑢𝑢𝑒𝑒𝑒𝑒𝑢𝑢𝑢𝑢

(5)

The batch normalization layer, ReLU activa-
tion function, and the maxPooling layer followed
the first to fifth convolution layers in both chan-
nels, while the maxPooling layer did not follow the
sixth convolution layer. Stride [2 2] was used on
all maxPooling layers and most convolution layers
to reduce the size of the feature maps generated
by these layers, decrease the number of parameters
involved in computation, and speed up the training
and classification tasks. Padding and stride [1 1]
were used to keep the output size of the two chan-
nels the same so that addition operations could be
performed at the ends of the two channels.

Figure 1. The architecture of the proposed concise CNN

65

Journal of Ecological Engineering 2023, 24(2), 61–71

Transfer learning, training and testing

GoogleNet, MobileNetV2, and SqueezeNet
were used to compare the performance of the
concise CNN model proposed in this study. These

three CNN modes were chosen because they have
a small number of parameters compared to other
CNNs and are frequently used in plant classifica-
tion tasks. Transfer learning was performed in all
three models using the PlantVillage dataset used

Table 1. Details of each layer of the SlimPlantNet architecture
First Channel Second Channel

Layer
Name Type and Size Output Size Total

Parameter
Layer
Name Type and Size Output Size Total

Parameter

Conv 11

Convolution layer
8x7x7, stride [2 2],
padding [2 2 2 2]

127× 127×8 1184

Conv
21

Convolution layer
8x15x15, stride [2 2],
padding [2 2 2 2]

123×
123×8 5408

BatchNorm
Followed by ReLU 127× 127×8 16 BatchNorm Followed

by ReLU
123×

123×8 16

MaxPooling layer
7x7, stride [2 2],
padding‚ same’

64×64×8
0 MaxPooling layer 3x3,

stride [2 2], padding‚
same’

62×62×8
0

0 0

Conv
12

Convolution layer
16x7x7, stride [2 2],
padding [2 2 2 2]

31×31×16 6288

Conv
22

Convolution layer
16x9x9, stride [2 2],
padding [2 2 2 2]

29×29×16 10384

BatchNorm
Followed by ReLU 31×31×16 32 BatchNorm Followed

by ReLU 29×29×16 32

MaxPooling layer
7x7, stride [2 2],
padding‚ same’

16×16×16
0 MaxPooling layer 3x3,

stride [2 2], padding‚
same’

15×15×16
0

0 0

Conv
13

Convolution layer
32x3x3, stride [2 2],
padding [2 2 2 2]

9×9×32 4640

Conv
23

Convolution layer
32×5×5, stride [2 2],
padding [2 2 2 2]

8×8×32 12832

BatchNorm
Followed by ReLU 9×9×32 64 BatchNorm Followed

by ReLU 8×8×32 64

MaxPooling layer
3x3, stride [2 2],
padding‚ same’

5×5×32
0 MaxPooling layer 3x3,

stride [2 2], padding‚
same’

4×4×32
0

0 0

Conv
14

Convolution layer
64x3x3, stride [2 2],
padding [2 2 2 2]

4×4×64 18496

Conv
24

Convolution layer
64x3x3, stride [1 1],
padding [1 1 1 1]

4×4×64 18496

BatchNorm
Followed by ReLU 4×4×64 128 BatchNorm Followed

by ReLU 4×4×64 128

MaxPooling layer
7x7, stride [2 2],
padding ‚same’

2×2×64
0 MaxPooling layer 3x3,

stride [2 2], padding‚
same’

2×2×64
0

0 0

Conv
15

Convolution layer
64x3x3, stride [2 2],
padding [2 2 2 2]

2×2×64 36928

Conv
25

Convolution layer
64x3x3, stride [1 1],
padding [1 1 1 1]

2×2×64 36928

BatchNorm
Followed by ReLU 2×2×64 128 BatchNorm Followed

by ReLU 2×2×64 128

MaxPooling layer
7x7, stride [2 2],
padding‚ same’

1×1×64
0 MaxPooling layer 3x3,

stride [2 2], padding‚
same’

1×1×64
0

0 0

Conv
16

Convolution layer
64x3x3, stride [2 2],
padding [1 1 1 1]

1×1×64 36928
Conv

26

Convolution layer
64x3x3, stride [1 1],
padding [1 1 1 1]

1×1×64 36928

BatchNorm
Followed by ReLU 1×1×64 128 BatchNorm Followed

by ReLU 1×1×64 128

Chan-
nel

Fusion

Fusion by Addition 1×1×64 -
Ave
Pool

5x5 Average pooling,
stride [2 2], padding‚
same’

1×1×64 -Fusion by
Concatenation 1×1× 128 -

Full1 Fully connected
layer 1x64 1×1×64 4160 Full2 Fully connected layer

1x10 1×1×10 650

66

Journal of Ecological Engineering 2023, 24(2), 61–71

in this study. In this study, transfer learning was
used to replace the classification layer in the three
architectures with a new layer that was scaled to
the number of classes in the dataset. All layers in
the comparison architecture except the classifica-
tion layer are preserved and frozen before being
retrained only on the new layer using the Plant-
Village dataset.

The proposed architecture named SlimPlant-
Net was trained from scratch. SlimPlantNet train-
ing and transfer learning comparison architecture
were implemented in 20 epochs using the stochas-
tic gradient descent with momentum (SGDM) op-
timization function. All comparison architectures
used a learning rate of 0.0003, whereas the pro-
posed architecture used a rate of 0.05. The test
was performed after each epoch, and the classifi-
cation time per image was performed sequentially
after all training and testing was completed. The
test was conducted on a computer with a Core i5
@ 2.7 GHz processor and 16 GB RAM memory
with a Matlab 2019 environment.

Further investigation was carried out by ex-
amining the different effects of the fusion method
of the two channels on SlimPlantNet via addition
and concatenation operations. In Table 2, the ar-
chitecture formed by the addition operation was
named SlimPlantNet_addition, and the architec-
ture formed by the concatenation operation was
named SlimPlantNet_concat. The performance of
each channel on the proposed architecture was also
demonstrated as a single CNN architecture. This
architecture was created by connecting each chan-
nel’s sixth ReLU layer to the averagePooling layer
and forming a complete CNN. SlimPlantNet_fil-
ter7 was the single CNN obtained from a channel
with a 7 × 7 filter, and SlimPlantNet_filter15 was
obtained from a channel with a 15 × 15 filter.

The performance of all CNN architectures
involved in this study was measured using clas-
sification accuracy, loss, and average time re-
quired to classify each leaf image. Classifica-
tion accuracy and loss are the most widely used
parameters in testing the performance of a CNN
(Maeda-Gutiérrez et al., 2020). Accuracy and loss
were measured in training and testing every train-
ing epoch was completed, whereas the average
classification time was measured during testing.
Classification accuracy CA was measured based
on the following Eq. 6:

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 +

+𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

(6)

where: TruePos (true positive) is the number of
positive images classified as positive;
TrueNeg (true negative) is the number
of negative images classified as negative;
FalPos denotes the number of nega-
tive images classified as positive;
FalNeg denotes the number of positive
images classified as negative.

RESULTS AND DISCUSSION

Table 2 compares the performance of the
proposed CNN model to the performance of the
comparison CNN architectures in the classifica-
tion of 14 different plant classes in the PlantVil-
lage dataset, namely Apple healthy, Blueberry
healthy, Cherry healthy, Corn (maize) healthy,
Grape healthy, Orange Haunglongbing (Citrus
greening), Peach healthy, Pepper healthy, Pota-
to healthy, Raspberry healthy, Soybean healthy,
Squash Powdery mildew, Strawberry healthy, and
Tomato Healthy. The training was carried out in
20 epochs with the previously mentioned learning
rate setting.

The test results show that the classification
accuracy, as well as the loss value, are nearly
identical between the proposed CNN model and
the comparison CNN architecture. In this study,
the accuracy of GoogleNet is almost identical
to the accuracy of GoogleNet shown in (Maeda-
Gutiérrez et al., 2020), which is 99.39% in 10 to-
mato classes from the PlantVillage dataset.

Significant differences can be seen in the train-
ing time and the required classification time per
image. SlimPlantNet using addition and concate-
nation operations takes 0.0043 seconds to classify
1 image on the test computer used in this study,
which is 5.12 times faster than SqueezeNet, 8.23
times than GoogleNet, and 9.40 times than Mo-
bileNetV2. The SlimPlantNet model also has a
much shorter training time. Of course, the aspects
of training time and classification time, as well
as the number of parameters involved, will be
the advantages of the SlimPlantNet model when
implemented in an agricultural real-time monitor-
ing system. Because there are fewer parameters,
it can be implemented in computing devices with
fewer resources and at a lower cost. The faster

67

Journal of Ecological Engineering 2023, 24(2), 61–71

classification time, the faster the monitoring sys-
tem will run in real time.

This study also carried out further testing of
the SlimPlanNet model using fusion with addition
operations and concatenation operations based on
the accuracy and loss of testing. SlimPlanNet’s
forming channels were also evaluated as a single
CNN. This test was run in 60 epochs with varying
numbers of classes, ranging from 5 to 38 classes,
to see trends and performance limits in different
data scales. Figure 2 depicts the test results.

SlimPlantNet addition achieved 98.81% clas-
sification accuracy on 38 classes and higher ac-
curacy on a smaller number of classes in this test.
In comparison, SqueezeNet achieved 98.46% test
accuracy in (Liu et al., 2021) and 98.49% in (Ara-
vind et al., 2020) in the classification of 38 Plant-
Village dataset classes. In (Hassan et al., 2021),

MobileNetV2 achieved a classification accuracy
of 97.02% in the classification of 38 PlantVillage
dataset classes. The study of (Sutaji and Rosyid,
2022) fine-tuned GoogleNet and MobileNetV2
by unfreezing the final convolution block layers.
The accuracy of the test on the classification of
38 PlantVillage dataset classes was 98.34% for
GoogleNet and 98.95% for MobileNetV2. The
results of this test and comparisons show that
SlimPlantNet addition’s accuracy is quite reliable
and competitive.

The results of this test also show that SlimP-
lantNet_addition is better in classifying the data-
set than SlimPlantNet_concatenation and its con-
structor channel. SlimPlantNet_addition’s accu-
racy is always higher, and the trend is quite stable
as the number of classified classes increases.

Table 2. Performance testing of the proposed CNN model and comparison models on 14 PlantVillage dataset
classes at 20 epochs

Architecture Training time
(hh:mm:ss)

Highest accuracy
achieved (%) Lowest loss achieved Number of

parameters
Classification
time/image (s)

Training Testing Training Testing

GoogleNet 11:36:09 100 99.87 0.0002 0.0044 6.8M 0.0354

SqueezeNet 05:11:05 100 99.92 0.0005 0.0038 1.24M 0.0220

MobileNetV2 20:50:16 100 99.80 0.0002 0.0081 3.4M 0.0404

SlimPlantNet_addition 01:44:22 100 99.58 0.0013 0.0201 222.99k 0.0043

SlimPlantNet_concat 01:33:28 100 99.60 0.0017 0.0198 234.09k 0.0043

SlimPlantNet_filter7 00:55:30 100 99.31 0.0018 0.0274 108.52k 0.0040

SlimPlantNet_filter15 00:56:11 100 99.23 0.0019 0.0269 128.10k 0.0029

Figure 2. Performance comparison of SlimPlantNet combined using addition
operation, concatenation operation, and performance of forming channels

68

Journal of Ecological Engineering 2023, 24(2), 61–71

Figure 3. Test classification loss from the proposed model

Figure 4. SlimPlantNet performance for plant classification of 38 classes
in 60 epochs (a) Testing accuracy; b) Testing loss)

a)

b)

69

Journal of Ecological Engineering 2023, 24(2), 61–71

The performance comparison based on the
test loss value shown in Figure 3 confirms the
test results based on classification accuracy that
the SlimPlantNet model with addition operation
outperforms channel merging with concatenation
operation. It is clear that the SlimPlantNet_ad-
dition loss value is always lower than the other
three models.

The last comparison carried out in this study
was a comparison of the trend of accuracy and
test loss in 60 training epochs from SlimPlantNet,
both combined with addition and concatenation
operations as well as the SlimPlantNet channel.
The training data on the PlantVillage dataset with
38 classes was highlighted, and the comparison
results are shown in Figure 4. SlimPlantNet test-
ing with addition operation fusion appears to be
more accurate and stable over 60 training epochs,
as does the loss value, which remains relatively
low during the training period.

SlimPlanNet_filter7 and SlimPlanNet_fil-
ter15 have generally lower performance than
SlimPlanNet_addition and SlimPlanNet_concat,
but SlimPlanNet_filter7 outperforms SlimPlan-
Net_concat in classification from 5 to 25 dataset
classes. Although the accuracy of SlimPlanNet_
filter7 is slightly lower than that of SlimPlanNet_
addition, if the number of parameters and classi-
fication speed are the most important factors, the
SlimPlanNet_filter7 model can be recommended
in classification tasks with fewer than 25 classes.

CONCLUSIONS

The results of the tests show that SlimPlant-
Net, which was formed by fusing two concise
CNN channels using the addition operation,
achieves reliable and competitive performance.
Although classification speed and training time are
not different, the SlimPlantNet model’s classifica-
tion accuracy and loss are better and more stable
than the performance of SlimPlantNet one which
uses channel fusion with concatenation operation.
SlimPlantNet’s classification accuracy on 14 dif-
ferent plant classes is nearly identical to the classi-
fication accuracy of the comparison architectures.

SlimPlantNet classifies images faster and
with fewer parameters than comparison architec-
tures. The speed in classification and the smaller
number of parameters are the advantages of the
SlimPlantNet model when implemented in a real-
time monitoring system in the agricultural field

with limited computer resources. Therefore, the
future work after this study will be to integrate
SlimPlantNet into the agricultural monitoring
system. The use of the SlimPlantNet model in
classification tasks other than plants is also inter-
esting to investigate, particularly when the clas-
sification task involves a small number of classes,
as in the PlantVillage dataset.

Acknowledgments

This work was supported by the Ministry
of Research and Technology/National Research
and Innovation Agency of Republic Indonesia
(Kementerian Riset Dan Teknologi/Badan Riset
Dan Inovasi Nasional Republik Indonesia) un-
der the scheme of Penelitian Disertasi Doktor
(PDD) 2021 with contract number of 56/SP2H/
LT/DPRM/2021.

REFERENCES

1. Abade A., Ferreira P.A., Vidal F.B. 2021. Plant dis-
eases recognition on images using convolutional
neural networks: A systematic review. Computers
and Electronics in Agriculture, 185(July 2020).
DOI: 10.1016/j.compag.2021.106125

2. Aravind K.R., Maheswari P., Raja P., Szczepański
C. 2020. Crop disease classification using deep
learning approach: an overview and a case study.
Deep Learning for Data Analytics, 173–195. DOI:
10.1016/b978-0-12-819764-6.00010-7

3. Awais M., Iqbal M.T.B, Bae S.H. 2021. Revisiting
Internal Covariate Shift for Batch Normalization.
IEEE Transactions on Neural Networks and Learn-
ing Systems, 32(11), 5082–5092. DOI: 10.1109/
TNNLS.2020.3026784

4. Bjorck J., Gomes C., Selman B., Weinberger K.Q.
2018. Understanding batch normalization. Ad-
vances in Neural Information Processing Systems,
2018-Decem(NeurIPS), 7694–7705.

5. Brahimi M., Kamel B., Moussaoui A. 2017. Deep
Learning for Tomato Diseases: Classification and
Symptoms Visualization. In Applied Artificial In-
telligence. DOI: 10.1080/08839514.2017.1315516

6. Brahimi M. 2018. Deep learning for plants dis-
eases. Springer International Publishing. DOI:
10.1007/978-3-319-90403-0

7. Chouhan S.S., Kaul A., Singh U.P., Jain S. 2018. Bac-
terial foraging optimization based radial basis func-
tion neural network (BRBFNN) for identification and
classification of plant leaf diseases: An automatic ap-
proach towards plant pathology. IEEE Access, 6(i),
8852–8863. DOI: 10.1109/ACCESS.2018.2800685

70

Journal of Ecological Engineering 2023, 24(2), 61–71

8. Elhassouny A., Smarandache F. 2019. Smart mo-
bile application to recognize tomato leaf diseases
using Convolutional Neural Networks. 2019 Inter-
national Conference of Computer Science and Re-
newable Energies (ICCSRE), 1–4. DOI: 10.1109/
ICCSRE.2019.8807737

9. Ferentinos K.P. 2018. Deep learning models for
plant disease detection and diagnosis. In Computers
and Electronics in Agriculture, 145. DOI: 10.1016/j.
compag.2018.01.009

10. Hassan S.M., Maji A.K., Jasiński M., Leonowicz Z.,
Jasińska E. 2021. Identification of Plant-Leaf Dis-
eases Using CNN and Transfer-Learning Approach.
Electronics (Switzerland), 10(12). DOI: 10.3390/
electronics10121388

11. Howlader M.R., Habiba U., Faisal R.H., Rahman
M.M. 2019. Automatic Recognition of Guava Leaf
Diseases using Deep Convolution Neural Network.
2nd International Conference on Electrical, Com-
puter and Communication Engineering, ECCE
2019, 1–5. DOI: 10.1109/ECACE.2019.8679421

12. Hughes D.P., Salathe M. 2015. An open access
repository of images on plant health to enable the
development of mobile disease diagnostics. http://
arxiv.org/abs/1511.08060

13. Iandola F.N., Han S., Moskewicz M.W., Ashraf
K., Dally W.J., Keutzer K. 2016. SqueezeNet:
AlexNet-level accuracy with 50x fewer parameters
and <0.5MB model size, 1–13. http://arxiv.org/
abs/1602.07360

14. Ioffe S., Szegedy C. 2015. Batch Normalization:
Accelerating Deep Network Training by Reducing
Internal Covariate Shift (F. Bach and D. Blei (eds.);
PMLR, 37, 448–456). http://proceedings.mlr.press/
v37/ioffe15.pdf

15. Kamilaris A., Prenafeta-Boldú F.X. 2018. Deep
learning in agriculture: A survey. Computers and
Electronics in Agriculture, 147(July 2017), 70–90.
DOI: 10.1016/j.compag.2018.02.016

16. Karthik R., Hariharan M., Anand S., Mathikshara P.,
Johnson A., Menaka R. 2020. Attention embedded
residual CNN for disease detection in tomato leaves.
Applied Soft Computing Journal, 86, 105933. DOI:
10.1016/j.asoc.2019.105933

17. Kaur S., Pandey S., Goel S. 2018. Semi-automatic
leaf disease detection and classification system
for soybean culture. IET Image Processing, 12(6),
1038–1048. DOI: 10.1049/iet-ipr.2017.0822

18. Knoll F.J., Czymmek V., Poczihoski S., Holtorf T.,
Hussmann S. 2018. Improving efficiency of organic
farming by using a deep learning classification ap-
proach. Computers and Electronics in Agriculture,
153, 347–356. DOI: 10.1016/j.compag.2018.08.032

19. Lajoie-O’Malley A., Bronson K., Burg S.V.D, Klerkx
L. 2020. The future(s) of digital agriculture and sus-
tainable food systems: An analysis of high-level

policy documents. Ecosystem Services, 45(August),
101183. DOI: 10.1016/j.ecoser.2020.101183

20. Liu Y., Gao G., Zhang Z. 2021. Plant disease detec-
tion based on lightweight CNN model. 2021 4th
International Conference on Information and Com-
puter Technologies (ICICT), 64–68. DOI: 10.1109/
ICICT52872.2021.00018

21. Lu J., Hu J., Zhao G., Mei F., Zhang C. 2017. An In-
field Automatic Wheat Disease Diagnosis System.
In Computers and Electronics in Agriculture, 142.
DOI: 10.1016/j.compag.2017.09.012

22. Luna R.G.D., Dadios E.P., Bandala A.A. 2019.
Automated Image Capturing System for Deep
Learning-based Tomato Plant Leaf Disease De-
tection and Recognition. IEEE Region 10 Annual
International Conference, Proceedings/TENCON,
2018-Octob(October), 1414–1419. DOI: 10.1109/
TENCON.2018.8650088

23. Ma J., Du K., Zheng F., Zhang L., Gong Z., Sun
Z. 2018. A recognition method for cucumber dis-
eases using leaf symptom images based on deep
convolutional neural network. Computers and Elec-
tronics in Agriculture, 154, 18–24. DOI: 10.1016/j.
compag.2018.08.048

24. Maeda-Gutiérrez V., Galván-Tejada C.E., Zanel-
la-Calzada L.A., Celaya-Padilla J.M., Galván-
Tejada J.I., Gamboa-Rosales H., Luna-García H.,
Magallanes-Quintanar R., Guerrero-Méndez C.A.,
Olvera-Olvera C.A. 2020. Comparison of convolu-
tional neural network architectures for classifica-
tion of tomato plant diseases. In Applied Sciences
(Switzerland), 10(4). DOI: 10.3390/app10041245

25. McCool C., Perez T., Upcroft B. 2017. Mixtures of
Lightweight Deep Convolutional Neural Networks:
Applied to Agricultural Robotics. IEEE Robotics
and Automation Letters, 2(3), 1344–1351. DOI:
10.1109/LRA.2017.2667039

26. Mohanty S.P., Hughes D.P., Salathé M. 2016. Using
deep learning for image-based plant disease detec-
tion. Frontiers in Plant Science, 7(September), 1–10.
DOI: 10.3389/fpls.2016.01419

27. Mokhtar U., Ali M.A.S., Hassanien A.E., Hefny H.
2015. Identifying Two of Tomatoes Leaf Viruses
Using Support Vector Machine. Advances in Intel-
ligent Systems and Computing, 339, 771–782. DOI:
10.1007/978-81-322-2250-7

28. Najdenovska E., Dutoit F., Tran D., Plummer C.,
Wallbridge N., Camps C., Raileanu L.E. 2021.
Classification of Plant Electrophysiology Signals
for Detection of Spider Mites Infestation in Toma-
toes. In Applied Sciences, 11(4). DOI: 10.3390/
app11041414

29. Rahman C.R., Arko P.S., Ali M.E., Khan M.A.I,
Apon S.H., Nowrin F., Wasif A. 2020. Identifi-
cation and recognition of rice diseases and pests
using convolutional neural networks. Biosystems

71

Journal of Ecological Engineering 2023, 24(2), 61–71

Engineering, 194, 112–120. DOI: 10.1016/j.
biosystemseng.2020.03.020

30. Rangarajan A.K., Purushothaman R., Ramesh A.
2018. Tomato crop disease classification using pre-
trained deep learning algorithm. Procedia Com-
puter Science, 133, 1040–1047. DOI: 10.1016/j.
procs.2018.07.070

31. Saleem M.H., Potgieter J., Arif K.M. 2020. Plant
Disease Classification: A Comparative Evaluation
of Convolutional Neural Networks and Deep Learn-
ing Optimizers. In Plants, 9(10). DOI: 10.3390/
plants9101319

32. Sandler M., Howard A., Zhu M., Zhmoginov A.,
Chen L.C. 2018. MobileNetV2: Inverted Residuals
and Linear Bottlenecks. Proceedings of the IEEE
Computer Society Conference on Computer Vision
and Pattern Recognition, 4510–4520. DOI: 10.1109/
CVPR.2018.00474

33. Santurkar S., Tsipras D., Ilyas A., Madry A. 2018.
How does batch normalization help optimization?
Advances in Neural Information Processing Sys-
tems, 2018-Decem(NeurIPS), 2483–2493.

34. Suryawati E., Sustika R., Yuwana R.S., Subekti A.,
Pardede H.F. 2018. Deep Structured Convolutional
Neural Network for Tomato Diseases Detection.
2018 International Conference on Advanced Com-
puter Science and Information Systems (ICACSIS),
385–390. DOI: 10.1109/ICACSIS.2018.8618169

35. Sutaji D., Rosyid H. 2022. Convolutional Neural
Network (CNN) Models for Crop Diseases Clas-
sification. Kinetik: Game Technology, Information

System, Computer Network, Computing, Electronics,
and Control, 4(2). DOI: 10.22219/kinetik.v7i2.1443

36. Szegedy C., Liu W., Jia Y., Sermanet P., Reed S.,
Anguelov D. 2015. Going Deeper with Convolu-
tions. Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR). DOI:
10.1002/jctb.4820

37. Too E.C., Yujian L., Njuki S., Yingchun L. 2019.
A comparative study of fine-tuning deep learning
models for plant disease identification. Computers
and Electronics in Agriculture, 161(October 2017),
272–279. DOI: 10.1016/j.compag.2018.03.032

38. Wu Q., Wang F. 2019. Concatenate convolutional
neural networks for non-intrusive load monitoring
across complex background. Energies, 12(8). DOI:
10.3390/en12081572

39. Wu Y., Wang Z., Shi Y., Hu J. 2020. Enabling On-
Device CNN Training by Self-Supervised Instance
Filtering and Error Map Pruning. IEEE Transactions
on Computer-Aided Design of Integrated Circuits
and Systems, 39(11), 3445–3457. DOI: 10.1109/
TCAD.2020.3012216

40. Yamashita R., Nishio M., Do R.K.G., Togashi K.
2018. Convolutional Neural Networks: An Over-
view and Its Applications in Pattern Recognition.
Smart Innovation, Systems and Technologies. DOI:
10.1007/978-981-15-7078-0_3

41. Zhang S., Huang W., Zhang C. 2019. Three-channel
convolutional neural networks for vegetable leaf
disease recognition. Cognitive Systems Research,
53, 31–41. DOI: 10.1016/j.cogsys.2018.04.006

